Matematika

Pertanyaan

diketahui f(x)=2x+5 dan g (x-1)=x²+2x+3 tentukan: a. rumus komposisi fungsi (g•f) (x) b. nilai a jika (g•f) (a) =27

2 Jawaban

  • g(x-1) = x²+2x+3
    g(x) = (x+1)²+2(x+1)+3
    g(x) = x²+2x+1+2x+2+3
    g(x) = x²+4x+6

    (g•f)(x)
    = g(f(x))
    = (2x+5)
    ²+4(2x+5)+6
    = 4x²+20x+25+8x+20+6
    = 4x²+28x+51

    (g•f)(a) = 27
    4a²+28a+51 = 27
    4a²+28a+24 = 0
    a²+7a+6 = 0
    (a+6)(a+1) = 0
    a = -6 atau a = -1
  • Mapel : Matematika

    Kelas : 10

    Bab : Fungsi Komposisi
    __________________

    g(x - 1) = x² + 2x + 3

    g(x) = (x + 1)² + 2(x + 1) + 3
    g(x) = x² + 2x + 1 + 2x + 2 + 3
    g(x) = x² + 4x + 6

    a] Fungsi komposisi (g o f) (x)

    (g o f) (x) = g(2x + 5)
    (g o f) (x) = (2x + 5)² + 4(2x + 5) + 6
    (g o f) (x) = 4x² + 20x + 25 + 8x + 26
    (g o f) (x) = 4x² + 28x + 51

    b] Nilai a jika (g o f) (a) = 27

    4x² + 28x + 51 = 27
    4x² + 28x + 51 - 27 = 0
    4x² + 28x + 24 = 0 → Bagi 4

    x² + 7x + 6 =
    (x + 6)(x + 1) = 0

    → (x + 6) = 0

    x1 = -6

    → (x + 1) = 0

    x2 = -1

    Jadi, nilai a yang memenuhi :

    a = -6 atau a = -1

Pertanyaan Lainnya